
NASA/CR- 1999-209713

ICASE Report No. 99-42

Statecharts via Process Algebra

Gerald Liittgen

ICASE, Hampton, Virginia

Michael von der Beeck

Munich UniversiO, of Technology, Miinchen, Germany

Rance Cleaveland

State Universit3, of New York at Stony Brook, Stony Brook, New York

October 1999

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for

NASA's scientific and technical information.

The NASA STI Program Office provides
access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, proiects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

Email your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA Access

Help Desk at (301) 621-0134

Phone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center lor AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR- 1999-209713

ICASE Report No. 99-42

Statecharts via Process Algebra

Gerald Liittgen

ICASE, Hampton, Virginia

Michael von der Beeck

Munich Universi_ of Technology, Miinchen, German),

Rance Cleaveland

State UniversiO, o.f New York at Stony Brook, Stony Brook, New York

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared fi)r Langley Research Center
under Contract NAS 1-97046

October 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover. MI) 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-217 I

(703) 487-4650

STATECHARTSVIA PROCESSALGEBRA*

(;ERAI,[)I,()TT(]ENt, MICtIAEI,VONI)F.RBt:I:.(_K ++, ANI) RANCE (_I,EAVFLANI)h

Abstract. Statecharts is a visual language for specif)dng the t)ehavior of reactive systems. The language

extends finite-state machines with concepts of h,ie_urchy, concurrency, and priority. Despite its t)opularity

as a design notation for embedded systems, precisely (lefining its semantics has proved extremely challenging.

In this paper, a simple process algebra, called Stateeharts Process Language (SPk), is presented, which is

ext)ressive enough for encoding Statecharts in a structure-l)reserving and semantics-preserving rammer. It is

established that the 1)ehavioral relation bisimulation, when applied to $Pk, preserves Stateeharts semantics.

Key words, bisimulation, compositionality, operational semantics, process algebra, Statecharts

Subject classification. Computer Science

1. Introduction. Statecharts is a visual language fi)r sl)ecifying the behavior of reactive systems [7].

Tile language extends the traditional notation of finite-state machines with eoncet)ts of (i) hierareh, y, so

that one may speak of a state as having sub-states, (if) co'rtcurreucy, thereby allowing the definition of

systems having simultaneously active subsystems, and (iii) priority, so that one may ext)ress that ('ertain

system activities have precedence over others. Statecharts has become i)ot)ular among engineers as a design

notation for embedded systems, and commercially availal)le tools provide supt)ort for it [10]. Nevertheless,

precisely defining the semantics of the language has proved extremely challenging, with a variety of prot)osals

[8, 9, 18, 19, 21, 28, 29] being offered for several dialects [34] of the language. While the research results

have yielded insight into different aspects of the notation, no definitive account has emerged. This has an

obviously undesirable practical ramification; tool builders for Statecharts must resort to ad hoc (tecisions

in their iInplementations of semantically-based tools, such as model checkers [16, 23], and this ineans that

designs developed by engineers have a meaning that inay vary from implementation to implementation.

The semantic subtlety of Stat(_('harts arises from the language's capability for defining transitions whose

enabh_ment disables other transit, ions. A Statechart may react to an event by engaging in an enabled

transition, thereby t)erforming a so-called micro step, which may generate new events that may in turn

trigger new transitions while disabling ()tilers. When this chain reaction comes to a halt, one execution

step, a so-called mae_o step, is complete. Technically, the difficulty for defining an ot)erational semantics

capturing tim "macro-step" behavior of Statecharts arises from the fact that such a semantics should exhibit

the following desiral)le t)roperties: (i) the synchrony hypothesis [2], which guarantees that a reaction to an

external event terminat(,s before the next event enters tile system, (if) eompositionality, which ensures that

*This work was supported by the National Aeronautics an(t Space Administration under NASA Contract No. NASI-97046

while the first author was in residence at |h(_ lnslit||te for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research (_enter, Hampton, VA 23681-2199, USA. The third author was supported by NSF grants (_C11-925796:L

CCR-9505662, (_('.R-980,1091, and INT-9603441, AFOSR grant. F49{12(}-95-1-0508, and ARO grant P-38682-MA.

?ICASE, Mail Stop 132C, NASA Langley Research (:enter, Ilampton, VA 23[i81-2199, USA, e-mail: lu(_ttgen'.(__icase.edu.

J/Department of (:omputer Science, Munich University of rechnolog.v, Arcisstr. 21, D-80290 M{int:hen, (lermany, e-mail:

beeck(_in.t urn.de.

§Department of Computer Science, State I.Tniversity of' New York at Stony Brook, Stony Brook, NY I 1794-4400, USA, e-mail:

Fancel',(l_ cs. s u n vs t) .ed 11.

tilt' semantics of a Statechart is defined in terms of the semantics of its components, and (iii) causality, which

demands that the participation of each transition in a macro step inust t)e causally justified. Huizing and

Gerth showed that an ot)erational semmlti(:s in wifich transitions are labeled purely by sets of events i.e.,

the "observations" a user would make cmmot be given, if one wishes all three properties t() hold [15]. In

fact, the traditional semantics of Statecharts, as defined by Pmmli and Shalev [28], satisfies tile synchrony

hyl)othesis and causality, but is not compositional. Other approaches [17, 18, 31] have achieved all three

goals, but at the eXl)ens(, of including complex information regarding causality in transition labels.

While not as well-established in practice, process algebras [1, 12, 24] offer many of the semantic advantages

that have t)roved elusive in Statecharts. In general, these theories are operational, and place heavy emphasis

on issues of compositionality through the study of congruence relations, such as bisimulation [24, 25]. Many of

the behavioral aspects of Statecharts have also been studied in the setting of process algebra. For example, the

synchrony hypothesis is relate(t to the maximal progress assumption developed in timed t)rocess algebras [11,

35]. In these algebras, event transitions and "clock" transitions are distinguished, with only the latter

rel)resentiug the advance of time. Maximal progress then ensures that time lnay pro(:eed only if the system

un(hu" consideration ('armor engage in internal colnt)utation. Clocks may therefore i)e viewe(t as "l)undling"

sequences of event transitions, which ma.y tm thought of as anah)gous to "nficro steps," into a single "time

stet)," which may be seen as a "macro step." The traditional SOS-style presentations of pro(:ess algebras

cal)ture a notion of "causality" h la Statecharts. The concept of priority has also been studied in process-

algebraic settings [4], and the Statecharts hierarchy operator is related to the disabling operator of LOTOS [3].

In this pal)er, we present a new, p_vcess-algebraic semantics of Statecharts. Onr approach involves

synthesizing the observations above; specifically, we present a new process algebra, called Statecharts Process

Language (SPL), and we show that it is expressive enough for embedding several Statecharts variants. SPk is

inst)ired by Hennessy and Regan's Timed P_vcess Language (TPL) [11], in that it extends Milner's CCS [24]

by the con('et)t of an abstract, global clock. Our algebra replaces the handshake coinmunication of TPL

by a multi-event coutmunication, and introduces a mechanism to specify priority among transitions as well

as a hierarchy operator [32]. The ot)erational semantics of 5PL uses SOS rules [26] to define a transition

relation whose elements are labeled with simple sets of events; then, using traditional t)rocess-alget)raic

resnlts we show that SPL has a compositional semantic theory based on bisimulation. We coImect SPL

with Statecharts by emb(,dding the variant of the language considered by Maggiolo-Schettini et al. in [18].

More t)recisely, we define a compositional translation from Stateeharts to SP[- that preserves the macro-step

semantics of the former. This result crucially del)ends on our treatment of the SPk ma(:ro-stet) transition

relation as a derived one: the standard SPL transition relation becomes in essence a iuicro-stei) semantics.

Thus, while our macro-step semantics cannot be comt)ositional (see tile result of Huizing and Gerth [15]),

we obtain a compositional theory, in the form of a semantic congruence, at a lower, micro-step level. In

addition to the usual benefits ('onferred by compositional reasoning, this semantics has a t)ra(:tical advantage:

given the unavoidable complexity of inferring macro steps, actual users of Statecharts would benefit from a

finer-grained semantics that helps them understand how the macro steps of their systems are arrived at.

The remainder of this paper is organized as follows. The next section gives a brief introduction to

Statecharts, while Section 3 defines the process algebra SPI_. Sections 4 and 5 formalize our embedding

of Statecharts semantics in SPL and present our main technical results, respectively. Section 6 shows the

flexit)ility o|" our aI)proach t)y examining its a(lal)tability to other Statechart variants. Related work is

discussed in Section 7. Finally, Section 8 gives our conchlsions and directions for fllture research.

2. Statecharts. Statecharts is a specification language for reactive systems [27], i.e., concurrent systems

which are characterized by their ongoing interaction with their envu'onment. They subsume finite state

machines whose transitions are labeled by pairs of events, where the first component is referred to as trigger

and may include uegated events, an(t the secotld eomt)onent is referred to as actiou. Intuitively, if the

enviromnent offers the events in the trigger, but not the negated ones, then the transition is triggered

and can t)e executed; it fres, theret)y producing the events in the label's action. Concurrency is achieve(t

by allowing comt)lex Statecharts to be comt)osed fl'om more siml)le ones running in parallel, which Inay

conllnunieate via t)road<:asting events. Elementary, or basic states in Statecharts may also t)e hierarchically

refine(t by injecting other Statecharts. Concurrency and hierarchy are esl)ecially inq)ortant concel)tS, since

they allow for bottom-up an(l top-down specifications of systems.

i i3_i

__J

F,(:. 2.1. Example Ntatechart

As an example, consider the Stateehart dei)icted in Figure 2.1. It consists of a so-called and-state, labeled

by n:), which (tenotes the parallel composition of the two Statecharts labeled by T_:_and Z_s- Actually, n:_ and

ns are the names of or-states, (teseril)ing sequential state machines. The first consists of two states nl and

_12 that are connected via transition tl with label -_a/b. The lat)e] specifies that tl is triggered t)y _, i.e.,

by the absence of event _,, and t)ro(tuces event b. States _tl an(1 1t2 are not refined further an(l, therefore,

are also referred to as basic states. Or-state ns is refine(l])y or-state _t(; and basic state 7t7, eommcte(t via a

transition labeled 1)y b/a. Or-state na is flH'ther refined hy basic states n4 an(t _t:,, and transition t_ labeled

hy b/u.

It should be mentioned that the variant of Statecharts considered here does not include "feat ures" present

in some other variants. In particular, we prohibit interlevel transitions, i.e., transitions crossi]l_ borderlines

of states, and triggers of the form in,_, where 7_ is the name of a state. Moreover, state hierar('hv does not

impose lint)licit priorities to transitions, where transitions on higher levels of the hierarchy have precedence

over transitions on lower levels; e.g., transition t3 does not have priority over transition t., iu ()m oxample.

The impact of altering our apt)roach to accommodate these concepts is discussed in Section 6.

2.1. Statecharts Terms. For our purposes, it is convenient to represent Statecharts not visually but

by terms. This is also done in related work [17, 18 31], and our at)l)roach ch)sely follows the one (teseribed

in [18]. Formally let ,%" he a countable set of names for Statecharts states, 7- be a countable set of uames

for Statecharts transitions, an(t 1-I be a countable set of Stateeharts events. Moreover, we associate with

every event e EII its negated counterpart -_e. Wc also lift negation to negated (_vellts t)y (tefining -_e Zdf (!.

Finally, we write -_E for {-_¢_I e E E }, if E C_H U {--e I e C l-I }. Then, the set of Stateeharts terms is (tefined

to t)e the least set satisfying the following rules.

1. Basic state: If 'u E ,,_, then s = [n] is a Statecharts term.

2. Or-state: Ifu E A', ., _ ..-s,,.. sk are Statecharts terms for k > 0, T C 7- x {1, ,k} x 2 llU_n x

2" x {1 k}, and 1 _< l _< k, then s = [n : (sl st.);l;T] is a Statecharts term. Intuitively,

Sl st. are the sub-states of s, and T is the set of transitions between these stales. The Statechart

Sl is the default state of s, whih, st is the state that is currently active; initially, I = 1.

3. And-state: If u E A', and if s, ,sk are Statecharts terms for k > 0, then s = [',. : (s, sk)]

is a Statecharts term.

We refer to ,,as the root of s and write root(s) =dr i_. If t = (t,i,E,A,j) E T is a transition of or-state

[, : (.s, st.); l; T], then we define name(i) =dr t, out(i) =,It si, ev(i) =,If E, act(i) =d A, and in(i) =,It sj.

TABLE 2.1

States and transitions of Statecharts terms

states([u]) =af {n}

states([u : ._':I: T]) =dr {n} U U{states(_i)] 1 < i < k}

states([,, : ._) =dr 1"} U U{states(si)ll < i < A]}

trans([n]) =dr

trans([,t : s';l; T]) =dr T U U{trans(.si) t 1 _<i _<k}

trans([',, : ._) =df U{trans(.s,) t 1 < i < k}

We write SC for th(, set of Statecharts terlns, in which (i) all state nanles and transition naxnes are

mutually disjoint, (ii) no transition t produces an event that contradicts its trigger, i.e., ev(t) A _act(t) = 0,

and (iii) no transition t produces an event that is inchlded in its trigger, i.e., ev(t) Cl act(t) = q). As a

consequence of (i), states and transitions in Stateeharts terms are uniquely referred to by their nanle. For

convenience, we often identify a Statecharts state .s aim transition t with its name root(s) and name(t),

rest)ectiw'ly. The sets states(s) and trans(s) of all states and transitions of s are inductively defined on

the structure of s, as depicted in Tahle 2.1, where ,q = (sl s_.). Finally, let us ,'eturn to our exaInple

Statechart in Figure 2.1 and present it as a Statecharts term s._ C SC. For our framework, we choose

H =dr {(',b,c}, A" =dr {)q,n2,--. ,n_}, and T =dr {t,,t2,t:3}.

89 ----dr[}"9: (S3,S8)] S3 ----dr['13: ('¢il.S2); 1 {<t[, 1, {_(/}, {b},2>}] sl ----dr['DI]

s., =dr [w,] _s =,it lug: (s6, sT); 1; {<t3,6, {b}, {_}, 7)}] s7 =dr ['V]

s,, =,,r [..,] s6 =,. [,,.: (s.,, .%);1; {<t_,4, {t,}, 1_.},_>}] s,, =dr [",,]

2.2. Statecharts Semantics. In the remainder of this section, we formally present the semantics of

Statecharts terms as is defined in [18], which is a slight variant of the "traditional" semantics proposed by

Pnueli an(t Shalev [28]. More precisely, this semantics (lifters from [28] in that it. does not allow the step-

construction flm(:tion, which we i)resent below, to fail. The semantics of a State(:harts term s is a t ransiti(m

system, whose states and transitions are referred to as configurations and macro steps, respectively. Config-

urations of s are usually sets config(s) of the names of those states which are (:urrently active [28]. We define

config(s) along the structure of s: (i) config([n]) =dr {u}, (ii) config([, : (sl , sk); l; T]) =df {,}Uconfig(sl),

an(t (iii) config([n : (slst.)]) =dr {n} U U{config(si) 11 < i < k}. However, for our purt)oses it is more

convenient to lisp Statecharts terms for configurations, as every or-state contains a reference to its active sub-

state. Consequently, the default configuration default(x) of Stateeharts term s may be defined inductively as

follows: (i) default([,,]) =dr ['], (ii) default(l,, : (Sl,... , sk); l; r]) =dr [" : (defautt(.s,),... , default(st.)); 1; T],

and (iii) default([n : (s, , s_.)]) =dr [n : (default(sl),..., default(sk))]. As mentioned hefore, a Statechart

rea('ts to th(' arrival of some external ew_nts by triggering enabled micro stet)s, possibly in a chaiil-reaction

like mamwr, thereby performing a ma('ro step. More precisely, a macro step corot)rises a maxiInal set of

TA BI,E 2.2

Step-construction/unction

function step-construction(.s, E); vat T := (/);

while TCenabled(s,E,T) do choose t Eenabled(.s E.T)\T; T:= TU{t} od:

return T

TAftI,E 2.3

I"unclion update

update([nl,T') =dr [n] update([,,:._,r') =df [n: (update(.sl T_) ,update(,sA.,Tk))]

/ [r_ : ,¢:l; T]

[t_ (.sl,..- , update(.s_,T'),... ,.s_);l;T]

update([t,:._;1;r],r') =dr [n (.s_ default(s,,,) sk);m;r]

[,,]

if T' = 0

ifql 7£ T' C trans(._z)

if OCT'= {(t',l,E,A,m)} C T

otherwise

uficro steps, or transitions, that are triggered t)3, events offered t)y the environinent or generated I)y other

micro steps, that are mutually consistent, compatible, and _vlevant, and that obey causality. The Statecharts

principle of global consistency, whi(:h prohibits an event to be present and absent in the same ma('ro step, is

subsumed by the notions of trigge,vd and compatible.

A transition t E trans(s) is consistent with T C trans(s), in signs t E consistent(s,T), if t is not in the

same parallel component as any transition in T. Formally,

consistent(s, T) =dr {¢ C trans(s) t Vt' (E T. t_LJ'}. (2.1)

Here, we write t_L,t', if t = t', or if there exists an and-state [n : (sl , s_.)] in s, i.e., t_ C states(s), such

that _ E trans(si) and t' C trans(sj) for some 1 _< i,j <_ k satisfying i ¢ j.

A transition t E trans(s) is compatible to all transitions in T _C trans(s), in signs t E compatible(s, T), if

no event produced by t appears negated in a trigger of a transition in T. Formally,

compatible(s, T) =dr {t E trans(s) 1Vt' E T. act(t) N _ev(t') = ¢} (2.2)

A transition t ¢ trans(s) is relevant for s in signs t C relevant(s), if the root of the source state of t is in

the configuration of s. Formally

relevant(s) --_df {t E trans(s) I root(out(t)) E config(s)} (2.3)

A transition t E trans(s) is triggered by a set E of events, in signs t C triggered(s, E), if the positive, but

not the negative, trigger events of t are in E. Formally,

triggered(s, E) =(If {t E trans(s) Iev(t) n II c_ E and -_(ev(t) fq _1-I) f3 E = q)} (2.4)

Finally, a transition t is enabled in configuration s regarding a set E of events and a set T of transitions,

if t C enabled(s, E, T), where

enabled(s, E, T) =dr relevant(s) C3consistent(s, T) CI triggered(s, E U U act(t)) M compatible(s, T)

t c T

(2.5)

Unh)rtunately, this formalism is still not rich enough to causally justify the triggering of each transition.

The I)rincit)h' of causality may be introduced by comI)uting macro steps, i.e., sets of transition names, using

tile nondeternfinistic step-construction function presented in Table 2.2. This function is adopted fl'om [18],

where also its soundness and completeness relative to tile classical approach via the notion of inseparability of

transitions [28] are stated. Note that. the xnaximality of each macro step implements the synchrony hypothesis

of Stateeharts. The set of all macro steps that can be constructed using function step-construction, relative

t.o a Statecharts term s and a set. E of environment events, is denoted by step(s,E) C_ 2 T. For a set

T E step(s. E). Stateeharts term s may evolve in a (single) macro step t.o term s' =dr update(s, T) when

triggered by the enviromnent events in E and, thereby, produce the events in A :,If U{act(t) I t E T}. We
F

denote this nlll('lO step bv ._"==_ s'. The function update is defined in Table 2.3, where ._'=dr (Sl , .%) and
' A

Ti =dr T _Atrans(si), for 1 < i < k. Observe that at most one transition of T may be enabled at the top-level

of an or-state: thus, the "otherwise" case in Table 2.3 cannot occur in our context. Intuitiveh, update(s, T),

for Y C trans(s), re-defines the active states of s when tile transitions ill T are executed.

2.3. Compositional Characterization of enabled. We conclude this section about Statecharts with

a ('(imp(isitional characterization of enabled, which will tie needed later in the paper. For this purpose, we

augment enabled with a fourth argument A C_H which contains tile events that nmst not he gen(u'ated by

enabh,(t transitions. Formally, we define enabled : SC x 2n x 2 n x 27 ----+ 2"r I)y

enabled(s, E, .4, T) =dr relevant(s) N consistent(s, T) Mtriggered(s, E U U act(t)) O compatible(s, .4, T)
tET

where compatible(s, .4, T) =dr {t E trans(s) Iact(t) N (.4 U Ucc.r =(ev(t') n -ql)) = @}. It is easy to see that

the new definition of enabled extends the ohl one as follows: enabled(s, E, T) = enabled(s, E, q),T). The

extended version of enabled inay now lie compositionally characterized as follows.

PROPOSITION 2.1. Let s ¢ SC, E,A C_H, and T' C_T.

1. If s = [,] is a basic state, then enabled(s, E, A, T') = O.

2. /fs = [It : (S 1 sk);/;T] is an or-state, then enabled(s,E,A,T') =

enabled(st, E, ,4, T') U

{ t E T[out(t) = sz, t E triggered(,st , E) 0 compatible(st, ,4, T') } if T' = @

enabled(st, E, .4, T') if @7_ T' C_ trans(,st)

{t'll' E triggered(sl, E) fq compatible(si.A.T')} if q)# T' {t'} C_T. out(if) = slotherwise

3. /jr _ ___ [II : (Sl Sk)] is an and-state, then enabled(s, E,.4, T') = Ul<:i<k enabled(,_i. Ei, Ai, Ti),

whe,v E, =dIE U U{ act(t) l t • Tj, j ¢ i }, Ai = d/A U Ul=(ev(t) fq -_n) I t (5 rj, j ¢i}. a,,.d T, = al

T' M trans(.si), for 1 < i < k.

The proof of this proposition can be done by induction on the structure of _'.

3. Process-Algebraic Framework. In this section, we present our process-algebraic framework whi(:h

is inst)ired Iiy timed pTvcess calculi, such as Hennessy an(l Regan's TPL [11]. Our language, which we

refer to as Statecharts Process Language (SPL), includes a special action a denoting the ticking of a global

(lock. SPL's semanti(' framework is based on a notion of transition system that involves two kin(Is of

transitions, action, transitions and clock transitions, modeling two different mechanisms of communication

andsynchronizationin concurrent systems. The role of actions in process algebras corresponds to the one

of events in Statecharts. A clock represents the progress of time, which manifests itself in a recurrent global

synchronization event, the clock transition, in which all process components are forced to take part. However,

action and clock transitions are not orthogona] concepts that can be specified in(tepen(lently from eact, other,

but are connected via the ma.T,imal progress assumption [11, 35]. I_Iaximal progress implies that progress of

time is determined by the completion of internal computations and, thus, mimics tim synchrony hypothesis

of Statecilarts. The key idea for embedding Statecharts ternis in a timed process algebra is t() represent

a macro step as a sequence of micro steps that is etlclosed by clock transitions, signaling the beginning

and tile end of tlle macro step, respectively. This sequence ilnI)licitly encodes causality and, thus, lea(is to

a conq/ositional semantics for Stateeharts, whose l)racticality (toes not suffer from comt)licate(t transition

labels including causal orders [17, 18, 31].

Unfortunately, existing time(t process algebras are, in their original form, not suitable for embedding

Statecharts. The reason is that Statecharts transitions may be label(,(1 by ntultiplc events and that some

events may apt)ear in tlmir negated form. Tim former feature implies that in contrast to standard t)rocess

algebras [1, 12, 24] processes may be forced to syncilronize on more than one event simultaneously, and tile

latter feature is similar to mechanisms for handling t)riority [4]. Moreover, our fl'amework must include an

ot)erator similar to tim disabling operator of LOTOS [3] for resembling state hierarchy [32]. Our State('tlarts

Process Language combines timse well-known concepts in a single pro(:ess algebra, which is expressive an(t

flexible enough for embedding several Statecharts variants, as we will silow below.

3.1. Syntax. Formally, let 3, t)e a countable set of events or ports, an(t let cr _ A be the distinguishe(t

clock event or clock tick. Based on A, we define input aetion.s" in SPI_ to be of the form (E, N), where

E,N C_ A, an(t output actions E to be subsets of A. In case of the inl)ut action (q),q)}, we speak of all

unobservable or inteT"nal action, which is also (tenoted by ,,. Moreover. we let el stand for the set of all

input actions. In (:ontrast to CCS [24], the syntax of SPI_ includes two different operators for dealing with

input and output actions, resI)ectively. Tile prefia: ope_ntor "(E, N}." only i/ernlits prefixing with respect to

input actions (E, N) which are instantly (:onsumed in a single step. Outt)ut actions E are signaled to tile

environment of a process by attaching them to the process via the signal operator "[E]cr(-)." They remain

visible until tile next clock tick cr occurs. The syntax of SPk is given by the following BNF

P ::= 0 I X I (E,N}.P I [E]a(P)] P+P] p_,p] pc,,p I pip [p\L

where L C_A is a restrietion set an(l X is a process variable taken from some countable domain 1_'. We also

allow the definition of equations X d_e__fp, where variable X is assigne(t to term P. If X occurs as a subterm

of P, we say that X is recursivehl defined. We adopt the usual definitions for open and closed terms and

guarded recursion, and refer to the closed an(t guarded terms as processes [24]. The symbol P denotes the

set of all processes and is range(t over by P and Q. Finally, the oI)erators t> and t>, called disabling and

euabling operator, respectively allow us to model state hierarchy.

3.2. Operational Semantics. The operational semanti(:s of an 5PL process P E P is given by a

labeled transition system (79, M U {or}, ---+, p), where 79 is the set of states, M U {or} the alpimbet, _ C_

T) x (.4 U {or}) x 79 the t rallsition relation, and P tim start state. We refer to transitiolls with labels iI1 el as

action trnnsitions ail(t to those with label cr as clock transitions. For the sake of simplicity, we write P _ P'
,%,

instead of (P, (E, N), P') E --_ and P _K+ p, instea(l of (P, a, P') C ----_. We say that P may engage in a

transition labeled by (E, N) or or, respectively aud thereafter behave like proeess P'. The transition relation

is defined in Tables 3.2 and 3.3 using operational rules. In contrast to CCS [24], our framework does not

provide a concept of output action transitions, such that "matching" input and output action transitions

synchronize with each other and, thereby, sinmttaneously change states. Instead, output, actions are attached

to SPk processes via the signal operator. In order to present our cominunieatioi1 meetmnisn_, we nee(t to

introduce initial output action sets, _(P), for P E P. These are defined as the least, sets satisfying the

equations in Tabh' 3.1. Intuitively, H(P) collects all events which are initially offered bv P.

TABLE 3.1

Initial output action sets

g([El.(P)) = _(P + Q) = _(P) u _(Q) _(X) = [(P)

_(PIQ) = _(P)u_(Q) _(P\ L) = _(P) \ L

(P Q) = _(P) U_(Q) _(P _,. Q) = _(P)

clef
where X = P

TABLE 3.2

Opcrational semantics (action ttnnsitions)

F. p,__ p--.+
Act Rec x X d_t p Suml

L" E

(E,X>.P_ P xTP'

f'2 !p---,p P p'
" Parl N 71 _(Q) = 0

P+Q_ El .,, 1(2• Q -_ p,

E p/ E lp_ Q22 , Q--_Q
En x Sum2 x Q par2 N A_(P) = 0

E tq _(P

Pc>"Q _P'D_'Qx P+Q-_c. Q' PIQ .-C. PIQ'

p, _ Q, ,.: ,p--_ Q--_ p-_p
Dis1 _" Dis2 N Res '_ E n L = O

_c u Q' --+ P'\LPC> Q_P'E>_,Q P_Q-_ P\L \,,

The operational semanti(:s for action transitions is set up such that P _ P' may be read as follows: P

can evolve to P' whenever the environnwnt offers comnnlnieations on all ports in E, but none on an), port

in N. More precisely, process (E, N).P may engage in inlmt action (E, N} and then behave like P. The

summation operator + denotes nondcterministic choice, i.e., process P + Q may either behave like P or Q.

Process P I Q stands for the parallel composition of P and Q according to an interleaving semanti('s with

synchronization on common ports. Rule Pad describes the interaction of t)roeess P with its enviromnent Q.

If P can engage in an action transition labeled by (E, N) to p¢, then P and Q synchronize on the events in

E N _(Q), provided that Q does not offer a communication on a port in N, i.e., N V/H(Q) = 0 holds. In this

(:as(,, P 1Q can engage in an action transition labeled by (E \ _(Q), N) to P' [Q. Rule Par2 deals with the

symmetric case, where the roles of P and Q are interchanged. The semantics of the disabling and enabling

opeTutors are tightly connected. Process P D Q may behave as Q, thereby permancmly disabling P, or as

P t>_ Q. In th(, latter ease only P may i)roeeed, and Q is temt)orarily disabled until the next ('lock tick

arrives. This allows for modeling Statecharts or-states, where process P is on a h)wer level than Q. The

disabling operator may also be thought of as a non pre-emptive interrupt operator, where Q is the interrupt

handler (see Section 6). The restriction opeTutor \L encapsulates all ports in L an(t, thereby, alh)ws the

seot)ing of events. Accordingly, Rule Res states that process P \ L can only engage in an action transition

labeled by (E, N), if there is no event in E, which is restricted bv L. Moreover, the events in L may be

eliminate(l flom N. Hence, th(' int(_rlml action • is tn'oduce(t from (E, N), if the environment ()fret's every

event in E and if all events ill N are restricted. Finally, t)rocess variable X, where X ,_rp. is identified with

a process that behaves as a distinguished solution of the equation X = P.

'[AI_Lf,: 3.3

Operational s(_mantics (clock tt'aTtsitioYt,',')

tAct (E,N) ¢ • tOut tSum
(E, N).P --% (E, N).P [E].(/_) --%/_ p +Q_2__ p, +Q,

tPar P-_P' Q_2_+Q, o_tI(PIQ) tNil -- tDis P_P' Q_z__Q,
PIQ _, P'IQ ' 0--%0 Pc>Q_P'E>Q'

tNes P _-_ P' • ¢ I(P \ L) tNec --P _ P' X d,Afp tEn P _ P'
P\ L _ P'\ L X -fi_ P ' P_>. Q _ P' D Q

The operational rules for clock transitions deal with the maximal progress assumption, i.e.. if ,, E I(P) =dr

{ {E, N)] 3P'. P _ P' } then a clock tick a is inhibited. The reason that transitions other than those labeled

by • do not have pre-emptive power is that these only indicate the potential of progress, whereas • denotes

real progress in our framework. Rule tNil states that inaction process 0 can idle forever. Similarly, process

{E, N).P may idh, for clock or, whenever (E, N) ¢ .. The signal operator in process [E]a(P), which offers

communications on the ports in E to its environment, disapt)ears as soon as t.hc next clock tick arrives and.

thereby, enables process P. Time has to proceed equally on both sides of summation, paralM composition.

and disabling, i.e., P + Q, P IQ, and P D Q can engage in a clock transition if and only if hoth P and

Q can. Tile side condition of Rule tPar implements maximal progress and states that there is no pending

communication between P and Q. The reason for the side condition in Rule tRes is that the restriction

operator may turn observahle intmt actions into the internal, unohservable intmt action • (see, Rule Res)

and, thereby, inay pre-emt)t the considered clock transition. Finally, Rule tEn states that a clock tick switches

the enabling to tile disabling operator. Rule tRec does not require extra explanation.

The operational semantics for SPL possesses several pleasant algebraic properties which are known from

timed process alget)ras [11, 35], such as (i) the idling property, i.e., ,, q_ I(P) implies 3P' C 79. P _+ P', for

all P E 7), (ii) the maximal progress property i.e., 3P' C P. P _L+ p, implies - q_ I(P), for all P E 7'-, and

(iii) the time determinacy property, i.e., P -_ P' and P -_+ P" implies P' = P", for all P, P_, P" C P.

Moreover, the summation and paralM operators are associative and commutative.

3.3. A Behavioral Equivalence. As shown above, tile SPL operational semantics interprets pro-

cesses as labeled transition systems. However, from a semantic point of view, several transition systelns

might describe the same observable system t)ehavior. For coping with this situation, standard t)roeess alge-

bras introduce behavioral equivalences which relate processes, or transition systems, that descrihe the same

intuitive behavior. One poI)utar hehavioral equivalence is bisimulation [24] which may be adapted to eater

for SPk as follows.

DEFINITION 3.1 (Bisimulation). Bisimulation equivalence, _ C _ x _, is the la_yest .wmmetrw relation

such that whenever P ,._ Q, the following conditions hold.

1. _(P) C__(Q)

2. If P @ P' then 3O' C 7). Q _ Q' and r' ,., Q'.

Note that SPL states in contrast to traditional process algebras also contain information in the form of

initial output action sets. This special situation is taken care of by Condition (1). Traditional results in

process algel)ra show that the above definition is well-fl)rmed and that bisimulation equivalence is indeed an

equivalence. ()ther work [33] may be used to establish that _ is a congruence for SPk.

4. Embedding of Statecharts. In this section, we present an embedding of Statecharts terms in SPL,

which is defined to be a mapping _.]] from Statecharts terms to SPL processes. Although the semantics of

SPL is (lefine(l on a "micro-stet) level," our t)rocess algebra allows us to en(:ode the syilchrony hypothesis

of Statecharts via maximal progress. More t)recisely, a macro step in Statecharts selnantics corresponds

t<) a se(luence ()f SPL action transitions which is ench>sed by (:lock transitions; such sequences implicitly

contain the causal order inherent in a Statecharts macro step. This correst)ondellce is the key fi)r proving a

one-to-one relationship betweell a Stateehart an(l its embedding.

4.1. Formalization of the Embedding. We start off by instantiating the process algebra SPL. We

choose II t0-71] for the set of ports A and A'U {i_ [n E A:} O T for the set of process variables l;. The necessity

for including negated events in A will t)ecome ol)vious later. We define the embedding _[._ : SC _ 7:'

inductively along the structure of Statecharts terms, as fotlows, where _ is the indexed version of + satisfying

def d_eef O.1. If ._ = [,,], then ls_ =,If n where n = i,
clef

'2. If .s = [_ : (._ls_.);/ T] and ni = root(.si), for 1 _< i <_ k, then [.s_ =dr 71, where 7_ = nl

aIld _t i def= _i C> _{lit_[t E T and root(out(t)) = 7_i}, together with the equations produced by

[._] _sk_. The translation lit]} of a transition t will be defined later.
def ^ def

3. If s = [T_:(._t sk)], then _s] =<if 1_ where n = n = root(sl)l ... root(sk), together with the

equations produced by _si] , _.st,.].

First, observe that the linage of the embedding mapping is a process, defined vm a process equation system,

where the left-han<t side of the equations are process variables taken from the names of states mid transitions.

A basic state semantically corresponds to the inaction process 0, whereas an or-state can either behave

according to the process semantics of the embedding of the currently active state st, or it may leave st by

engaging in at transition t E T with out(t) = .st. Observe that an or-state is mapped using the disabling

operator which semantically resembles state hierarchy. The translation of an and-state, which allows one

to specify parallel composition, straightforwardly maps its component states to the parallel composition of

the processes resulting from the translations of each of these states. The interesting part of the definition

of _-] is tim translation tit]} of a transition (t, i, E, A, j). In the followix_g, E' stands for E AII, the set of

positive events contained in E, and N' denotes the set -_(E f'/-_II) to-_A, which includes the negated negative

td°f[4 to (E n _n)]_(+,_),events in E and the negation of the events in A. We define lit]} =(if {E', N').t where . = ,

i.e., the translation splits a Statecharts transition (t, i, E, A, j) in two parts, one handling its trigger E and

one executing its action A. In order to execute its trigger all positive events in E inust be offered by the

environment, and alL negative events in E must be absent. However, there is one more thing we have to obey

when triggering a transition: global consistency. Especially, we must ensure that there is no transition in

the sanle macro step, which fires because of the absence of an event in A. Therefore, we include _c, where

(' C .4, in the set N _. Events of the form --,e are offered by process t, whenever transition t triggers due to the

absence of event e. Hence, lit]} can evolve via a SPL transition labeled by {E', N') to process t, whenever the

trigger of t is satisfied and whenever global consistency is guaranteed. Process t signals that transition t has

10

_I'At_LE ,1.1

Embedding of thc Example Statcchart

def
['s'9_ = ",1 = "13 1'18

(lef
I"3_ = ,l:, = '11

')1 def= ,,, t> (0, {,,-qd).t,

t, '_'J[{b, =. }],,(.;,.:)
dof <lef

_."l] =,1 = i_l = 0
def def

.'.,]= ,., = i_..2= 0
def

[._;8_ = "/8 = 11,6

[l 6 def= ,,,, > ({b}, {_,}).t:,
def

t:, = [{.}]_(+,7)
def

[,'6_ = '1.6 = "4

_1,1 def= ,, > <{b},{_d>.t_
def

t,, = [{d]_(+,,_)

clef ?_14 clef_'_d =n., = . = 0
def <le['

[.%_,_= '_._= ¢'5 = 0
def _ def

["_7_ = '17 = '17 = 0

._//{a._b} . \

/_ ° - A_

[n a}i{h} {a=_b

'_./'--£2' "LJ

{bl

it_, {:' }

(3

()_jl _a. b)

been triggered. Accordingly, it .offers the events in A until the current macro step is completed, i.e., until a

clock transition is executed. In order to ensure global consistency, process t also offers the events in E N _H.

It is worth noting that SPL's two-level semantics of action and clock transitions allows for broadcasting

events using SPL's synchronization mechanism together with its nlaximal t)rogress assumption.

We now return to our introductory example by presenting its formal translation to SPL in Table 4.1,

left-hand side. The embedding's operatiolml semantics is depicted on the right-hand side of Table 4.1, where

i._,d+ft2 E>_ ({b}, {_a}).t:_, and],'_r0 t> ({b}, {--,}).t:_. Moreover, the initial <)utput aeti<m set H(P), for

some P 6 79, is denoted next to the ellipse symbolizing state P, an(t the sets N _ appearing in the label

of transitions are underlined in order to distinguish them from the sets E'. Let us ha_,e a ch)ser look at

the leftmost path of the transition system, which passes the states (n3 Ins), (tl Ins), (tl lie), (0 t t_), (0l t3),

and (0 10). The first three states are separated from the last three states by a clock transition. Hence, the

considered sequence corresponds to two "potential" macro steps. We say "t)otential," since macro steps only

emerge when composing our Statecharts embedding with an environment which triggers macro steps. The

events needed to trigger the transitions and the actions produced by thein can be extracted from a macro-

step sequence as follows. For ot)taining the trigger, (:onsider all transition labels (E, N) occm-ring in the

sequence, add up all events in components E, and include the negations of all positive events in components

N. Regarding the generated actions, consider the set of l)ositive events in the initial output action sets of

the states preceding the clock transition which signals the end of the macro step. Thus, the first t)otential

macro step of the exmnl)le se(luence is triggered by -_a and produces events b and c, whereas the second is

triggered by b and produces a. The state names along a sequence also indicate the transitions which have

fired. More precisely, whenever a state includes a variable t E 7- at its top-level, transition t participates in

the current macro step. Thus, for the first t)otential macro stel), transitions tl and t.2 are chosen, whereas

11

the second consists of transition t:_ only. Note that t3 is not enabled ill states (tl Ins) or (ti]t2), since event

-net is in their initial output action sets and a G act(t:_). Hence, our embedding resI)ects glol)al consistency

which t)rohibits tl and ta to occur in the same ma('ro stet).

4.2. Generalization of the Embedding. As a technical means for proving the main result of this

t)al)er which is stated in the next section, we generalize the embedding function to _., "1 : SC x 27. _ _ in

order (:apture micro steps. Intuitively, _[s,T]_ identifies the SPL process which _s] reaches when it engages in

the transitions in T. Formally Is, Y] is (tefin(,d inductively over the structure of s as follows.

1. If s = [,1, then [s,T'] =dr n.

2. If s = [_ :(sl _'k);I; T], then

{ i_,,r'_ _ Z{_t]}lt e T, o-t(() -- st}

is,, T'] t>,, Z{{It_lt • T, out(t) .s.t}
is, rt_ :df tt

0

if T' = 0

if 0 ¢ T' C_trans(st)

if 0 ¢ T' = {t'} C_T, out(f) = ,st

otherwise

3. If ._ = in: (,st,... , .s'k)], then is, T']] =dr Is,, T,][... I l[sk, Td, where, T, =dr T'Ntrans(si), 1 < i < k.

In our proof ('ontext, T is a prefix of a sequence of transitions generated by the stet)-construction flmction,

i.e, _([_s, T]) = U,eT act(t) holds. The mapping I[', "] is a generalization of _.] since Is] - Hs, 0], for all s e SC.

Her(,, the symbol - stands for syntacti(: equality on t)rocesses up to "unfolding" of recursion. Formally, - is

the largest congruence on 79 that ('on(dins syntactic equality and obeys the folh)wing t)roI)erty: C - Q and

c'_rP implies P - Q.

5. Semantic Correspondence. For formalizing our intuition of the semantic relation t)etween State-

charts terms and their SPk embeddings, we define a notion of SPL macro step by combining several transitions

E ptto a single step. as outlined in Section 4.1. Accordingly, we write P _ if there exists soIne P" • 79 such
A

that (EnvE IP) \ A _ *(EnvE IP") \ A -£4 (0 IF') \ A and _(P") = A, where Envlc d----ef[E]cI(O).Intuitively,
0

P is placed in the context (EnvE [.) \ A, in which Envt,, models a generic, single-steI) environment that offers

the events in E until ('lock tick c_ occurs.

5.1. Step Correspondence. The following relation, which we refer to as step cmTespondence, provides

the formal foundation for relating Statecharts macro steps and $PL macro steps.

DEFINITI()N 5.1 (Step Correspondence). A relation _ C SC x 79 is a step correspondence if for all

(s, P) • 7_ and E, A C II the following conditions hold:
E

1. V,#• 5C. s_s' implies3P' • 79 . P_a P' and(s',P')•R.
E

2. VP' • 79. P_ P' implies 3s' E SC. .'s_.. ._' and (s',P') • _.

We say that ,s is step-correspondent to P, if (s, P) • T_ for some step correspondence _.

THEOREM 5.2 (Semantic Correspondence). Every s • SC is step-correspondent to _s].

Proof sketch. It is sufficient to establish that T_ =dr {(.s, _.s]) Is • SC} is a step correspon(tence which

can t)e done by induction on the structure of s. Intuitively, one can show that, if T = (tt,... ,tk) is a

sequen('e of transitions of s E SC generated by the step-construction fimction relative to the environment

E C_H, then there exists a sequence of k internal transitions fi'om (EnvE I _[s])\ A to a t)rocess wtfich can only

engage in a clock transition to (0 1 [[update(s. T)]])\ A. Moreover, the/th int eriml transition, where 1 < l < k,

12

corresponds to the firing of tt in 0. Vice versa, if (EnvE] Is[) \ :X is the origin of an SPL path to a process

which can only engage in a clock transition to (0[P') \ A and which mimics the triggering of a transition

sequence T = (tl,... , t,.), then T can be generated by ttle step-construction function relative to s and E.

Moreover, [update(s T)]] - P'.

The formalization of the above intuition requires the following auxiliary properties, where s E SC and

E, .4 C_II. Here, T stands for an arbitrary prefix of the above transition sequence (tl,... , t_.) interpreted as

set, i.e., T = {tl,...,tt} for some 0 _< 1 _< k, and act(T) stands for U,er act(t).

E p

1. 3t E enabled(u, E, A, T) \ T implies [0, T[_ P' for some E', N' C_A and P' E 79, such that P' -

[[s, T tO{t}_, E' = (ev(t) n 11) \ act(T), and N' = -,(ev(t) n -qI) O -_act(t).
E I

2. Is, T[_ P' for some E' C_E, N' n (E O -,A) = 0, and P' E 79 imt,lies 3t E T. P' - Is, TO {t}_,

t E enabled(s, E, ,4, T) \ T, E' = (ev(t) C'III) \ act(T), and N' = -_(ev(t) A -_H) U -_act(t).

3. enabled(u, E, ,4, T) \ T = 0 implies _s, T] _ P' for some P' E _, where P' - [update(u, T), 0_, and

V(E', N'> E I([[s, T]]). E' \ E # 0 or N' N (E U -,A) # O.

4. Is, T[[-_ P' for some P'E 79 and E'\E ¢ 0 or _N'N (E U _A)¢ 0 for all (E',N') E I([s,T])

implies enabled(s, E, A, T) \ T = 0 and P' - lupdate(s, T), 01t.

The above properties establish a micro-step level relationship between Statecharts terms and the processes

occurring in their embedding. The proof of each property can be done by induction on the structure of s and

uses our extensions of the enabled flmction (of. Section 2.3) and the embedding mapping (cf. Section 4.2). [3

5.2. Preservation Results. We close the technical part by returning to tim behavioral relation ,-_ of

bisimulation equivalence. First, we state a preservation result involving _ an<t SPk's macro-stet) semantics.

E

THEO_EM 5.3. Let P,P' Q ¢ 79 such that P ,,, Q and P@ P'. Then 3Q' E 79. Q_Q' and P' Q'.

The validity of this t.heorem relies on the congruence property of --, for SPL. When combining the insights

obtained by establishing Theorems 5.2 and 5.3, one may derive the following corollary which relates bisim-

ulation equivalence and Statecharts macro-step semantics.

COROLLARY 5.4. Let E, A C_H, s E SC, and P E 79 such that _s[_ P. Then
E

1. Vs' E SC. s =* .s" implies 3P' E 79. P _ P' and _s'] _ P'.
A A

- E

2. VP' E 7'. P _ P' implies 3s' E SC. s ==_ s' and Is'[,,, P'.
A A

6. Adaptability to Other Stateeharts Variants. For Statecharts, a variety of different senmntics

has been introduced in the literature. The comparison paper [34] surveys over twenty Statecharts variants.

In this section, we show how our approach can be adapted to these variants and, thereby, testify to its

flexibility. We focus on the most relevant issues of Statecharts semantics, wtfich are identifie(l in [34].

As is immanent in this paper, we favor an operational semantics over a denotational one, since we

feel that operational models are more intuitive and, therefore, easier to understand. Moreover, operational

models provide an immediate interface to verification tools which implement state-exl)loration techniques.

An imt)ortant observation of this tml)er is that the concept of a single, global clock together with maximal

progress is the key to providing a compositional, causal state-machine semantics for Statecharts. Although

the semantics is defined on the niicro-ste t) level, it allows for an easy i(lentification of macro steps. The clock

enforces global synchronizations which mark the beginning and end of macro stel)s. Thus, macro stet)s are

represented as sequences of micro stet)s , which encode the underlying causality of State(:harts semantics.

13

In theStatechartsvariantexaminedin thispaper,twofeaturesareleftoutwhichareoftenadoptedin
othervariants.Onefeatureconcernsrater-level transitions, i.e., transitions which cross tile "borderlines"

of Statecharts states and, thus, permit a style of "goto"-programnling. Unfortunately, when allowing inter-

level transitions the syntax of Stat(wharts terms cannot be defined comt)ositionally and, consequently, nor

its semantics. The second feature left out is usually referred to as state reference and permits the triggering

of a transition to depend on the fact whether a certain parallel component is in a certain state. Such state

reh, rences can be encoded in SPL's commmfi(:ation scheme by introducing st)ecial events in,, for 7_ E A '_,

which may appear in the trigger of transitions and which are signaled by a process if it is in state 7_.

Another issue of Statecharts semantics coi_cerns the question whether there exists a difference in sensing

internal and external events. Usually, internal events are sensed within a macro step, but external events

are not. Hence, events are instantaneous, i.e., an event exists only for the duration of the macro step un(ter

consideration. We achieve this semantics by using tlw signal operator which stops the signaling of events as

soon as the next clock tick arrives. However, in the semantics of Statemate [8] an event is only sensed in the

macro step fi)llowing the one in which it was generated. This behavior can be encoded in our embedding by

basically splitting every state t E 7- into two states that are connected via a clock transition.

The Statecharts concept of negated events forces transitions to be triggered only when certain events are

absent. Negated events may be used for imposing priority between transitions and, thereby, for resolving

nondeterministic choices. SPI_ adopts this concept by requiring input actions to tie pairs of sets of events, one

containing the events which nmst be present and the ()tiler the events which nmst be absent fi)r triggering a

transition. Howew_r, when permitting negated events in a macro-step semantics, one has to guarantee that

the effect of a tran.sition is nr>t contradictory to its cause. Regarding this issue, one may distinguish two

concepts: global consistency and local consistency. The former prohit)its a transition, containing a negative

trigger event -,e, to be executed if a micro step in the same macro step l)roduces e. This is enforced in our

embedding by offering -_e, whenever a transition triggers due to the absence of e. Moreover, _e is included

in the set of events which need to t)e absent in all Statecharts transitions producing e. When leaving out

the events _e in our emi)edding, we obtain the weaker notion of local consistency, i.e., once an event c is

signaled in a micro step, no following micro step of tile sanle macro step may fire if its trigger contains -_c.

Local consistency implicitly holds in our eml)e(lding since an event is always signaled until the next ma('ro

st(, I) begins, i.e., until a ch)ck transition is executed.

In addition to the t)ossit)ility of encoding priorities between transitions via negated events, one may also

introduce ml implicit priority mechanisnl along state hieTurchy, as is done, e.g., in Statenmte [10]. More

pre('isely, a transition leaving an or-state is given priority over any transition within this state, i.e., or-states

may be viewed as pTv-emptive interrupt operators. Considering this behavior in SPL requires one to modify

the semantics of the disat)ling operator, accordingly. However, such a modification does not introduce any

new semantic issues, since the necessary concept of pre-emption is the same as for the synchrony hypothesis.

7. Related Work. Achieving a compositional semantics for Statecharts is known to be a difficult task.

The prol)lems involved were systematically analyzed and investigated by Huizing and Gerth in the early

nineties in the more general context of real-time reactive systems [15], for which three criteria hax,e t)een

fl)und to be desirat)le: (i) _vsponsiveness, which corresponds to the synchrony hypothesis of Statecharts,

(ii) modularity, which refers to the aspect of compositionality, and (iii) causality. Huizing and Gerth proved

that these properties cannot be combined in a single-leveled semantics. As a ('onsequence, we followed their

suggestion t() study two-leveled senmntics. In our approach, the three pr(iperties hold on different levels:

li

compositionalityholdsonthemicro-steplevel,i.e.,tilelevelof SPkactiontransitions,whereasresponsiveness
andcausalityisguaranteedoiltilemacro-steplevel,i.e.,tile levelonwhichsequencesofSPkactiontransitions
betweenglobalsynchronizations,caused by clock ticks (T, are trundled together.

Uselton and Smolka [31] and Levi [17] also focused on achieving a clean, compositional semantics for

Statecharts by referring to process algebras. In cont.r_st to our approach, Uselton and Smolka's notion of

transition system involves complex labels of the form (E, -<}, where E is a set of events and -< a transitiw_,

irreflexive order on E, for encoding causality. Unfortunately, their semantics suffers from some serious

problems, as pointed out in [17, 18]. Essentially, the semantics does not correspond as intended to the

Statecharts semantics of Pmmli and Shalev [28]. Levi repaired this shortcoming by modifying the domains of

the argmnents of -< to sets of events and by allowing eml)ty steps to be represented explicitly. However, we

believe that our semantics, where labels do not contain any order at all, profits from improved readability.

Maggioh)-Schettini et al. (:onsidered a hierarchy of equivalences for Statecharts, in(:luding isomorphism

and bisimulation, and stu(lied congruence t)rot)erties with respect to Statecharts ot)erators [18]. For this

purl)ose, they defined a compositional, operational macro-stei) semantics of Statecharts, which slightly (lifters

fl'om the one of Pnueli and Shalev since it does not alh)w the stet)-construction function to fail. In their

semantics, labels of transitions consist of four-tuples which inchute information about causal ()rderings,

global consistency, and negated events. This comt)lexity prohibits an intuitive understanding of Stateclmrts

semantics and an easy integration with existing analysis and verification tools. However, it shouht t)e noted

that the semantic fl'amework t)resente(t in [18] serves well for the tmrpose of studying (:ertain algebraic

prot)erties of equivalences on Statecharts, such as flflly-ahstractness results and axiomatizations [14, 15].

Another popular design language with a visual appeal like Statecharts and, moreover, a solid algebraic

foundation is Argos [20]. However, the semantics of Argos, defined via SOS rules as labeled transition systems,

significantly dill'ors from classical Statecharts semantics. For example, Argos is deterministic, at)st(acts from

"non-c.ausal" State(:harts by senmntically identifying them with a failure state, and alh)ws a single paralM

component to fire Inore than once within a nlacro step.

Interfacing Statemate [10] to model-(:he(:king tools is a main ohjective in [16] and most recently also

in a series of pal)ers hy Mikk et al. [21, 22, 23]. The first t)at)er of this series includes a ti)rmalization of

the semantics of St atemate, as defined in [8], within the specification formalism Z [30]. The se(:ond pat)er

descril)es a translation from a sui)set of Statemate to hie_nrchical state, automata which may 1)e mapl)ed to

the specification language of the verifi(:ation tool SI)in [13], as shown in Mikk's third paper.

8. Conclusions and Future Work. This paper presented a process-algebraic at)preach t() detining a

compositional semantics for Statecharts. Our technique translates Statecharts terms to terms in the l)rocess

algebra SPL which is expressive enough to model the semantic princit)les un(terlying Statecharts. SPI_ allows

one to encode a "micro-stet)" semantics of Statecharts in the traditional SOS-style; it is at this h,vel that

our semantics is comt)ositional , as bisinmlation may he shown to I)e a congruence for the language. The

macro-ste t) semantics may then be given in terms of a derived transition relation. This semanti('s cannot

be comt)ositional , as results of Huizing and Gerth have shown [15]. However, tile algehraic basis of our

semantics t)ermits the investigation of, e.g., the largest congruence consonant within this semanti('s. Also,

since these Se(luen('es essentially encode total (:losures (if causal orders, partial order mcthod._ might I)e useflfi

for avoiding unnecessary state exl)tosion in t)ractice [6]. Note that, although SPl_ is a newly (leveloped process

algehra, all of its semantic ingredients have alrea(ly been studied in the process-algebra conmmnity.

15

We (h,monstrated the utility of our technique by formally embedding the Statecharts semantics of [18],

which is a slight variant of Pnueli and Shalev's semantics [28], in SPk. Our elnbedding is sound and complete

in th(' sense that Statecharts ternls and their e.nlbeddings mutually simulate each other. Tile benefits of

our apt)roach include (i) a unifortn semantic framework for intuitively modeling the semantics for several

Statecharts variants in a conlt)ositional style, (it) a simt)le nlethod to interfacing Statecharts to existing

verification tools, such as the Concurrency Workbench of North Carvlina (CWB-NC) [5], (iii) the t)ossibility

of lifting behavioral e(tuivalences fl'om process algebras to Statecharts. X_ illustrated the viability of this

last point by showing that bisimulation equivalence, which is a congruence for SPL, t)reserves Statecharts

nmcr(r-step semantics. Finally, the t)at)er gave insight in the close seinantic relationshi t) between I)rocess

alget)ras and Statecharts and, therel)y, testified to the practical importance of process algebras for design

tools for reactive systenls.

Regarding future work, we plan to continue our investigation of behavioral equivalences for Statecharts

in general, and "weak" equivalences in particular, by studying them for SPL. It may also be interesting to

characterize the "Statecharts sub-algebra" of SPk. N'Ioreover, we intend to impleinent SPL and our embedding

ill the CWB-NC.

Acknowledgments. _k' would like to thank Peter Kelb, Ingolf Kriiger, and Michael Mendler for many

discussions on Statecharts, as welt as Piyush Mehrotra for carefully proofreading a draft of this paper.

REFERENCES

[1] ,J. BAETEN AND _V. _VEIJLAND, Process Algebra, Vol. 18 of Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge, UK, 1990.

[2] G. BERRY AND G. GONTHIER, The ESTEREL synchronous prog_unming language: Design, semantics,

implemeutatiou, Science of Comt)uter Programming, 19 (1992), pp. 87-152.

[3] T. BOLOGNES[AND E. BRINKSMA, Introduction to the IS() specification language LOTOS, Conq)uter

Networks and ISDN Systems, 14 (1987), pp. 25--59.

[4] R. CLEAVELAND, G. L_'TTT(;EN, AND V. NATARAJAN, Priority in p_vcess algeb_u, it, Handbook of

Process Algebra, ,]. Bergstra, A. Ponse, anti S. Sinolka, eds., Elsevier, 1999.

[5] R. CLEAVELAND AND S. S[Ms, The NCSU Concurrency Workbench, in Computer Aided Verification

(CAV '96), R. Alur and T. Henzinger, e(ts., Vol. 1102 of Lecture Notes in Computer Science, New

Brunswick, N J, USA, July 1996, Springer-Verlag, pp. 394 397.

[6] P. GOI)EFROID, Partial-Order Methods for the Verification of Concurrent Systems - An Approach to

the State-Ea_losiou Problem, Vol. 1032 of Lecture Notes in Computer Science, Springer-Verlag, 1996.

[7] D. HAREL, Statecharts: A visual formalism for complex systems, Science of Comt)uter Programming, 8

(1987), pp. 231 274.

[8] D. HAREL AND A. NAAMAD, The STATEMATE semantics of Stateeharts, ACM Transactions on Soft-

ware Engineering, 5 (1996), Pt). 293 333.

[9] D. HAREL, A. PNUELI, .]. SCHMIDT, AND R. SttERMAN, On the formal semantics of Statecharts, in

Symposium on Logic in Computer Science (LICS '87), Ithaca, NY, USA, June 1987, IEEE Computer

Society Press. pp. 56 64.

HAREI_ AND NI. PoLrrL Modeling Reactive Systems with Statecharts: The STATEMATE Approach,

McGraw Hill. 1998.

[10]D.

16

[11] M. HENNESSY AND T. REGAN, A process algebra for timed systems, Information and Computation,

117 (1995), pp. 221 239.

[12] C. HOARE, Communicating Sequential Processes, Prentice Hall, London, UK, 1985.

[13] G. HOLZMANN, The model checker Spin, IEEE Transactions on Software Engineering, 23 (1997),

pp. 279 295.

[14] J. HOOMAN, S. HA.MESH, AND \V.-P. DE RO[.;\'ER, A compositional axiomatization of Statccharts,

Theoretical Conlputer Science, 101 (1992), pp. 289 335.

[15] C. HUIZ[N(;, Semantics of Reactive Systems: Comparison and Full Abstraction, Ph.D. thesis, Eindhoven

University of Technology, Eindhoven, The Netherlands, March 1991.

[16] P. KELB, Abstraktionstechniken fiir automatischc Verifikationsmethoden, Ph.D. thesis, UIfiversity of

Oldenburg, Oldenburg, Germany, 1996.

[17] F. LEVI, Verification of Temporal and Real-Time PTvperties of Statecharts, Ph.D. thesis, University of

Pisa-Genova-Udine, Pisa, Italy, February 1997.

[18] A. MAG(;IOLO-SCHETT[NI, A. PERON, AND S. TINI, Equivalences of Statecharts, in Seventh Inter-

national Conference on Concurrency Theory (CONCUR '96), U. Montanari and V. Sassone, eds.,

Vol. 1119 of Lecture Notes in Computer Science, Pisa, Italy, August 1996, Springer-Verlag, pp. 687

702.

NIARANINCHI, The ARGOS langua.qc: Graphical representation of automata and description of re-

active systems, in IEEE Workshop on Visual Languages, IEEE Computer Society Press, October

1991.

--, Operational and compositional semantics of synchronous automaton compositions, in Third Inter-

national Conference on Concurrency Theory (CONCUR '92), R. Cleaveland, ed., Vol. 630 of Lecture

Notes in Computer Science, Stony Brook, NY, USA, August. 1992, Springer-Verlag, pp. 550 564.

,'I1KK, Y. LAKHNECH, C. PETERSOHN, AND -,.I. SIEGEL, O1t formal semantics of Statecharts as

supported by STATEMATE, in Second BCS-FACS Northern Formal Methods Workshop, Ilkley, UK,

July 1997, Springer-_rlag.

MIKK, Y. LAKHNECH, AND _,I. SIEGEL, Hierarchical automata as model for Statecharts, in Proceed-

ings of Asian Computing Science Conference (ASIAN '97), Vol. 1345 of Lecture Notes in Computer

Science, Springer-Verlag, December 1997.

_kIIKK, Y. LAKItNECH, M. SIE(;EI,, AND G. HOLZMANN, l/_rifTling Statecharts with Spin, in Pro-

ceedings of the Workshop on Industrial-Strength Formal Sl)ecification Techniques (WIFT '98), Boca

Raton, FL, USA, October 1998, IEEE Computer Society Press.

M1LNER, Communication and Concurrency, Prentice Hall, London, UK, 1989.

PARK, Concurrency and automata on infinite sequences, in Proceedings of 5th G.I. Conference on

Theoretical Computer S('ienee, P. Deussen, ed., \2)1. 104 of Lecture Notes in Conlputer Science,

Springer-Verlag, 1981, Pl). 167 183.

PLOTKIN, A structural appTvach to operational semantics, Tech. Report DAIMI-FN-19, Computer

Science Department, Aarhus University, Denmark, 1981.

PNUELI, ed., Linear and Branching Structures in the Semantics and Logics of Reactive Systems,

\%1. 194 of Lecture Notes in Computer Science, Springer-Verlag, 1985.

PNUEL[AND _'I. S[tALEV, What is in a step: On the semantics" of Statecharts, in Theoretical Aspects

of Comt)uter Softwm'e (TACS '91), T. It() and A. Meyer, eds., \'ol. 526 of Lecture Notes in CoInl)uter

Science, Sendal,]at)an, Sei)tember 1991, Springer-Verlag, pp. 244 264.

[19] F.

[2o]

[21] E.

[22] E.

[23] E.

[24] R.

[25] D.

[26] G.

[271A.

[281A.

17

[29]P. SCttOLZ,Design of Reactive Systems and Their Distributed Implementation with Statecharts, Ph.D.

thesis, Munich University of Technology, Munich, Germany, August 1998.

[30] J. SPIvv:v. U,nderstauding Z: A Specification Language and its Formal Semantics, Cambridge Tracts in

Theoretical Computer Science 3, Cambridge University Press, Cambridge, UK, 1988.

[31] A. USELTON AND S. SMOLKA, A compositional semantic; for Statecharts using labeled transition sy,_-

terns, in Fifth International Conference on Concurrency Theory (CONCUR '94), B. Jonsson and

.l. Parrow, e(ts., Vol. 836 of Lecture Notes in Computer Science, Uppsala, Swe(tetL August 1994,

Springer-\'erlag, t)P. 2 17.

[32] --, A process-algeb_nic semantics for Statecharts via state refinement, in IFIP TC2 Working Colffer-

ence on Programming Concepts, Methods and Calculi (PROCOMET '94), North Holland/Elsevier,

1994.

[33] C. VERtt()EF, A eougruence theorem for structured operational semantics with predicates and negative

Ire'raises, Nordic Journal of Computing, 2 (1995), pp. 274 302.

[34] M. YON DER BEECK, A comparison of Statecharts vaT"iants, in Formal Techniques in Real-Time and

Fault-Tolerant Systems (FTRTFT '94), H. Langmaack, W.-P. de Roever, and J. Vytot)il, eds..

Vol. 863 of Lecture Notes in Computer Science, Lfil)eck, Germany, September 1994, Springer-Verlag,

t)t). 128 148.

[35] \V. YI, CCS + time = an interleaving model for real time systems, in Automata, Languages and

Programming (ICALP '91), J. Leach Albert, B. Monien, and M. Rodriguez Artalejo, e(ts._ Vol. 510

of Lecture Notes in Comt)uter S(:ience, Madrid, St)ain, July 1991, Springer-Verlag, Pl). 217 228.

18

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reportingburden for this collection of information is estimated to averageI hourper response,including the time for reviewinginstructions, searchingexisting data sources,
gathering and maintaining the data needed,and completing and reviewingthe collection of information. Send commentsregarding this burdenestimate or any other aspect of this
collection of information, including suggestionsfor reducingthis burden, to Washington HeadquartersServices,Directoratefor Information Operationsand Reports. 1215 JefFerson
Davis Highway.Suite 1204, Arlington, VA 22202 4302. and to the Office of Management and Budget, PaperworkReduction Project (0704-0188),Washington, DC 20503.

I. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

October 1999

4. TITLE AND SUBTITLE

Statecharts via process algebra

6. AUTHOR(S)

Gerald Liittgen

Michael yon der Beeek

Rance Cleaveland

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Conll)uter Apt_licatitms in Science and Engineerin_

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administrati<m

Langley Research Center

Hantlmm, VA 23681-2199

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-97(}46

WU 505-9(}-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 99-42

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR- 1999-209713

ICASE Report No. 99-42

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
Presented at the InternationM Conference on Concurrency Theory (CONCUR'99).

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

State('harts is a visual Language for speeif_ving tile behavior of reactive systelllS. The language extends finite-state

machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for

embedded svstems, precisely defining its semantics has proved extremely challenging. In this paper, a simple

proct,ss algei)ra, called Statecharts Process Language (SPL), is presented, which is expressive t_nough for encoding

Statecharts in a structure-preserving and semantics-preserving manner. It is established that the behavioral relation

ttisimulation, when applied t t) SPL, preserves Statecharts semantics.

14. SUBJECT TERMS

bisimulation, compositionalitv operational semantics, process algebra, statecharts

17. SECURITY CLASSIFICATION

OF REPORT

Um'lassified

_ISN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

23

16. PRICE CODE

A03

20. LIMITATION
OF ABSTRACT

Standard Form 298tRey. 2-89)
Prescribedby ANSI Std Z39-18
298-102

